
Thinking about the Software Testing CurriculumThinking about the Software Testing Curriculum

Cem Kaner, J.D., Ph.D.Cem Kaner, J.D., Ph.D.
Presentation at

Florida International University
Miami, March 2009

Copyright (c) Cem Kaner 2008-2009
This work is licensed under the Creative Commons Attribution-ShareAlike License To This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
These notes are partially based on research that was supported by NSF Grants EIA-
0113539 ITR/SY+PE: “Improving the Education of Software Testers” and CCLI-0717613
“Adaptation & Implementation of an Activity-Based Online or Hybrid Course in Software
Testing.” Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

System Testing Programmer Testing
• Does the program meet the needs of • Does the program do what I intended?Does the program meet the needs of

the stakeholders?
Does the program do what I intended?

• Evidence is taken from every source that
provides information about the needs

• Evidence is taken from the programmer's
intent, which might be reflected in design p

and preferences of the stakeholders
(requirements documents, tech support
data, competing products, interviews of
stakeholders etc)

, g g
documents, unit tests, comments, or
personal memory

stakeholders, etc.)

• Tests are typically behavioral. For
practical reasons they are usually black
box (a subspecies of behavioral) Also,

• Tests are almost always glass box, though
in practice, they are often runs of the
working program while reviewing a box (a subspecies of behavioral). Also,

for psychological reasons--focus the
tester on the stakeholder.

working program while reviewing a
listing or running a debugger

• Tools are diverse. GUI regression tests • Tools: Unit test frameworks (e.g. JUNIT), g
are common but wasteful. More useful
to think in terms of computer-assisted
testing.

• High volume tools are in infancy but vital

(g J)
code coverage, complexity metrics,
version control, source code analyzers,
state models

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

• High volume tools are in infancy, but vital

System Testing Programmer Testing
• About 20% to 60% of the new product • All programmers do programmer testing About 20% to 60% of the new product

development effort (in terms of staff
size)

All programmers do programmer testing
to some degree. Even weak
programmers find the vast majority of
their own bugs (public vs private bugs)

• This is NOT primarily about
programming. To a very large degree, this
is applied social science, plus specific
subject matter expertise (Of course

• This IS programming. This helps the
programmer understand her
implementation (or the implementation
by a colleague) subject matter expertise. (Of course,

programming skills help in many ways:
realistic theory of error; communication
quality; tool use)

by a colleague).

• The tools are easy. What to DO with the
tools is hard:

• Problem decomposition
Di h (i l di h)• Discrete math (including graphs)

• Boolean logic (complex
combinations)

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Curricular objectives
• Development of the IEEE/ACM curriculum guide for SE used the

dumpster algorithm.
• Resulting recommendations are for a course that is broad and g

shallow.
– Learn lots of definitions

G "f ili " i h l f – Get "familiar" with lots of concepts
– Get skilled at almost nothing
– I don't think these types of courses have scholarly or academic I don t think these types of courses have scholarly or academic

merit.
• Recent texts meet the curriculum guide requirements, adding detail

that corresponds to the authors' biases about what is important in that corresponds to the authors biases about what is important in
the field. (Lots of applied mathematics, or lots of standards-
compliance, not much stakeholder value.)
I h k d b b h f

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

• I think everyone is served better by a tighter focus

System Testing Course Programmer Testing
Course

Programming Course
that includes testing

• quality as stakeholder value • basic tools: professional, • easy to introduce the tools q y
• test-applied requirements

analysis
• heuristics for telling

"failure" from "pass"

p
integrated programming
environment, xUnit,
coverage monitors (many
types of coverage), style

y
into the labs

• what are you going to have
students DO with them?

failure from pass
• reporting bugs effectively
• mining data from complex

sets of documents
• failure modes and

types of coverage), style
checkers, version control,
source code analyzers

• applying the tools to
significant programming • failure modes and

consequences from an
external view

• measuring and reporting

significant programming
tasks (fresh code and
maintenance)

• critical problems include
i bili illi progress

• techniques (domain (risk-
aware stratified sampling),
risk-based, spec-based,

inability or unwillingness to
decompose problems,
resistance, and limited
imagination about what to

scenarios, etc.), qualitative
analysis

• using tools cost-effectively

test (what tests are
interesting)

• few recent books on
programmer testing

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

p g g
address test design well

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

What’s a Computer Program?
The last couple of years, I taught intro programming.
Texts define a “computer program” like this:

A program is a set

f i t tiof instructions

for a computer

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 7

Computer Program

A set of instructions for a computer?

What about what the program is for?

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 8

Computer Program
A set of instructions for a computer?

What about what the program is for?

We could define a house
• as a set of construction materials

bl d di h d i • assembled according to house-design
patterns.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 9

Computer Program
A set of instructions for a computer?

What about what the program is for?

We could define a house
• as a set of construction materials

bl d di h d i • assembled according to house-design
patterns.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 10

The focus is on

• StakeholdersStakeholders
– (for people)

• Intent
(li i)– (to live in)

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 11

Set of instructions for a computer…

Where are the

• Intent?Intent?

• Stakeholders?• Stakeholders?

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 12

A different definition
A computer program is
• a communication

 l h d • among several humans and computers
• who are distributed over space and time,
• that contains instructions that can be executed by a computer• that contains instructions that can be executed by a computer.

.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 13

Social Science?
Social sciences study humans, especially humans in society.

• What will the impact of X be on people?

• Work with qualitative & quantitative research methods.

• High tolerance for ambiguity, partial answers, situationally
ifi ltspecific results.

• Ethics / values issues are relevant.

Di i f l / i i i l• Diversity of values / interpretations is normal.

• Observer bias is an accepted fact of life and is managed
explicitly in well-designed researchexplicitly in well designed research.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 14

What are we really testing for?

Quality is value to some Quality is value to some
person

J W i b-- Jerry Weinberg

Testers look
Under this view:
• Quality is inherently subjective

Testers look
for different
things – Different stakeholders will

perceive the same product as
having different levels of quality

things …
… for different

stakeholders

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 15

stakeholders

Software error
An attribute of a software product
• that reduces its value to a favored stakeholder

 i i l di f d k h ld• or increases its value to a disfavored stakeholder
• without a sufficiently large countervailing benefit.

An error:
• May or may not be a coding error

Any threat to
th l f May or may not be a coding error

• May or may not be a functional
error

the value of
the product to

 t k h ld any stakeholder
who matters.

James Bach

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 16

James Bach

What are we really testing for?

Quality is value to some personQuality is value to some person
-- Jerry Weinberg

Is a car defective if it can’tIs a car defective if it can t
withstand a 40 mph crash into a
brick wall?

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 17

brick wall?

Not every
limitation on

value is a bug:

Effective bug Effective bug
reporting requires
evaluation of the evaluation of the
product’s context
(market, users,

environment, etc.)

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 18

Software testing
• is an empirical
• technical
• investigation• investigation
• conducted to provide stakeholders
• with information
• about the quality
• of the product or service under test

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 19

Testing is always a search for information
Different • Find important bugs, to get them fixed

• Assess the quality of the product
• Help managers make release decisions

Different
objectives

require different p g
• Block premature product releases
• Help predict and control product support costs
• Check interoperability with other products

require different
testing tools and
strategies and Check interoperability with other products

• Find safe scenarios for use of the product
• Assess conformance to specifications
• Certify the product meets a particular standard

g
will yield

different tests,
• Certify the product meets a particular standard
• Ensure the testing process meets accountability

standards
• Minimize the risk of safety related lawsuits

different test
documentation

d diff t • Minimize the risk of safety-related lawsuits
• Help clients improve product quality & testability
• Help clients improve their processes

E l h d f h d

and different
test results.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

• Evaluate the product for a third party

20

Test techniques
A h i i i ll i d l h id A test technique is essentially a recipe, or a model, that guides us
in creating specific tests. Examples of common test techniques:

• Function testing • Build verification testingFunction testing
• Specification-based testing
• Domain testing

Build verification testing
• State-model based testing
• High volume automated testingg

• Risk-based testing
• Scenario testing

g g
• Printer compatibility testing
• Testing to maximize statement

• Regression testing
• Stress testing

and branch coverage

We pick the technique that
• User testing
• All-pairs combination testing

We pick the technique that
provides the best set of

attributes, given the
information objective and

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

• Data flow testing

21

j
the context.

Examples of test techniques
• Scenario testing

– Tests are complex stories that capture how the program will be
used in real-life situations.

• Specification-based testing
– Check every claim made in the reference document (such as, a

 ifi i) T h h h d contract specification). Test to the extent that you have proved
the claim true or false.

• Risk-based testing
– A program is a collection of opportunities for things to go wrong.

For each way that you can imagine the program failing, design
tests to determine whether the program actually will fail in that tests to determine whether the program actually will fail in that
way.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 22

Techniques differ in how to define a good test
Power. When a problem exists, the test
will reveal it
Valid. When the test reveals a problem,
it is a genuine problem

Performable. Can do the test as designed
Refutability: Designed to challenge basic
or critical assumptions (e.g. your theory of
the user’s goals is all wrong)it is a genuine problem

Value. Reveals things your clients want to
know about the product or project
Credible. Client will believe that people

the user s goals is all wrong)
Coverage. Part of a collection of tests
that together address a class of issues
Easy to evaluate.

will do the things done in this test
Representative of events most likely to
be encountered by the user
Non red ndant Thi t t t

Supports troubleshooting. Provides
useful information for the debugging
programmer
Appropriatel comple A Non-redundant. This test represents a

larger group that address the same risk
Motivating. Your client will want to fix
the problem exposed by this test

Appropriately complex. As a program
gets more stable, use more complex tests
Accountable. You can explain, justify, and
prove you ran it

Maintainable. Easy to revise in the face
of product changes
Repeatable. Easy and inexpensive to

 th t t

Cost. Includes time and effort, as well as
direct costs
Opportunity Cost. Developing and

f i thi t t t f

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

reuse the test. performing this test prevents you from
doing other work

23

Techniques differ in how to define a good test
• Scenario testing:
• complex stories that capture how the program will be used in real-

life situations
– Good scenarios focus on validity, complexity, credibility,

motivational effect
Th i d i i h l b – The scenario designer might care less about power,
maintainability, coverage, reusability

• Risk-based testing:
• Imagine how the program could fail, and try to get it to fail that way

• Good risk-based tests are powerful, valid, non-redundant, and aim
at high stakes issues (refutability)at high-stakes issues (refutability)

• The risk-based tester might not care as much about credibility,
representativeness, performability—we can work on these after
(f) b

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

(if) a test exposes a bug

24

Examples of important context factors
Wh h k h ld i h • Who are the stakeholders with
influence

• What are the goals and quality
criteria for the project

• How to decide what result
variables to attend to

• How to decide what other result criteria for the project
• What skills and resources are

available to the project
• What is in the product

variables to attend to in the event
of intermittent failure

• How to troubleshoot and simplify • What is in the product
• How it could fail
• Potential consequences of

p y
a failure, so as to better
• motivate a stakeholder who

might advocate for a fix
potential failures

• Who might care about which
consequence of what failure

might advocate for a fix
• enable a fixer to identify and

stomp the bug more quickly
H t d h t

q
• How to trigger a fault that

generates a failure we're
seeking

• How to expose, and who to
expose to, undelivered benefits,
unsatisfied implications, traps, and
missed opportunities

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

g
• How to recognize failure

missed opportunities.

25

Software testing
• is an empirical
• technical
• investigation• investigation
• conducted to provide stakeholders
• with information
• about the quality
• of the product or service under test

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 26

A Toxic Myth about Testing: Testing = Verification

NOTICE THE HUGE DIFFERENCE HERE
BETWEEN PROGRAMMER TESTING AND

IF you have contracted for delivery of software and the contract

SYSTEM TESTING

IF you have contracted for delivery of software, and the contract

contains ,

THEN verification-oriented testing can answer the question,

Do we have to pay for this software?

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 27

Verification is insufficient for commercial software
Verification-oriented testing can answer the question:

Do we have to pay for this software?

But if…
• You’re doing in-house development
• With evolving requirements (and therefore an

incomplete and non-authoritative specification).
Verification only begins to address the critical
question:

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 28

Verification / Validation
In system testing,
the primary reason we do verification testing is to assist in:

lid i• validation:

Will this software meet our needs?
 di i• or accreditation:

Should I certify this software as adequate for our needs?

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 29

System testing (validation)
D i i t t t i lik d i i t l i Th l Designing system tests is like doing a requirements analysis. They rely
on similar information but use it differently.
• The requirements analyst tries to foster agreement about the system

 b b il Th l i di di bl to be built. The tester exploits disagreements to predict problems
with the system.

• The tester doesn’t have to reach conclusions or make
recommendations about how the product should work. Her task is
to expose credible concerns to the stakeholders.

• The tester doesn’t have to make the product design tradeoffs. She
exposes the consequences of those tradeoffs, especially
unanticipated or more serious consequences than expected.

• The tester doesn’t have to respect prior agreements. (Caution: p p g (
testers who belabor the wrong issues lose credibility.)

• The system tester’s work cannot be exhaustive, just useful.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 30

It's kind of like CSI
MANY tools, procedures,
sources of evidence.

T l d d• Tools and procedures
don't define an
investigation or its goals.

• There is too much
evidence to test, tools are
often expensive, so p ,
investigators must exercise
judgment.

The investigator must pick• The investigator must pick
what to study, and how, in
order to reveal the most
needed information

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

needed information.

Some examples
I probably won't reach these in the talk (not enough time for them), but they
are worth taking some time to consider if you are reading these slides.

• Bug reporting is one of the critical skills in software testing, but the
communication skills needed for this are taught weakly in the CS curriculum

• IEEE standards and DoD approaches to testing favor heavily scripted tests.
These ARE slightly better than worthless, but they are enormously

 d l d Th l d k l f expensive and grossly inadequate. They also provide weaker controls for
junior testers than you might expect.

• Assessing whether a program passed or failed a test is usually a heuristic
i Y f ll h h f h b h d exercise. You can often tell whether some aspect of the program behaved as

you expected, but that's a far cry from knowing whether the program is
behaving correctly or misbehaving.

S ft i i t d i t f th f t i • Software engineering measurement deviates from theory of measurement in
most other fields by underemphasizing construct validity (by not asking how
we know whether the "measurement" actually measures what we are trying
to measure). The result is predictable mischief, and the abandonment of

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

to measure). The result is predictable mischief, and the abandonment of
metrics programs at most non-government-contractor companies.

32

Example 1
Bug reporting is one of the critical skills in
software testing, but the communication skills
needed for this are taught weakly in the CS
curriculum

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Why aren’t critical bugs fixed?
• Client experienced a wave of serious product recalls (defective firmware)

• Why were these serious bugs not found in testing?

• They were found in testing and reported
• Why didn’t the programmers fix them?

• They didn’t understand what they were reading
• What was wrong with the bug reports?

• Looking over 5 years of bug reports, I could predict deferrals
better by clarity/style/attitude of report than from severity

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

better by clarity/style/attitude of report than from severity

34

What are we actually looking for / hoping to report?
• Blind spots

• Of significance to one or more stakeholders g
with influence

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 35

What are we actually looking for?
• Blind spots

– Programmers find and fix most of their own bugs.
– Testers find the bugs the programmers missedTesters find the bugs the programmers missed.
– Therefore, the testing task = looking for the bugs that hide in programmers’ blind

spots.
– To test effectively, our theories of error have to be theories about the mistakes To test effectively, our theories of error have to be theories about the mistakes

people make and when / why they make them.

• We can and should take advantage of opportunities to routinize well-articulated theories g pp
of error (e.g. via mutation testing, fault injection) but these address only the theories of
error (e.g. types of fault injected) that we explicitly consider.

– As to the rest blind spots.

• By the way, what is coverage?
– % of tests executed . . .

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

. . . out of the pool of tests that we can derive from the same theory of error

36

Coverage
• Common measures of coverage are weak guides for test designers:• Common measures of coverage are weak guides for test designers:

– 100% statement coverage will expose all syntax errors but
achieves little device-configuration coverage

– 100% functional-specification-statement coverage might achieve
only 35% statement+branch coverage

– 100% business scenario coverage might achieve little variable-100% business scenario coverage might achieve little variable
boundary coverage

– http://www.kaner.com/pdfs/negligence_and_testing_coverage.pdf
– http://www.kaner.com/pdfs/measurement_segue.pdf

• Rather than mechanistically shooting for X% of Y type of coverage,
practitioners explicitly or implicitly try for multidimensionallyp p y p y y y
prioritized levels of coverage across different types of risks

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 37

What are we actually looking for / hoping to report?
• Blind spots

• Of significance to one or more stakeholders
ith i flwith influence

– We investigate bugs in preparation for an effective report:
° DiscoverDiscover
° Isolate
° Generalize
° Maximize
° Externalize
° Tailor to audience

– This lets us creates sales proposals (aka bug reports)
° We are trying to motivate someone else to spend their

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

We are trying to motivate someone else to spend their
resources to do something we want them to do.

38

Sales = software engineering?
• Persuasive communication comes up in many software

engineering contexts.
• Famous examples• Famous examples

• Challenger disaster
• David Parnas’ warnings on SDI (Star Wars)David Parnas warnings on SDI (Star Wars)
• Electronic voting equipment

• Routine examplep
• Status reporting in the face of unreasonable demands (Death

March)

• But if we study the communication as a software
engineering problem, how much traction does that give us?

• Maybe we gain more insight from thinking about human-to-

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Maybe we gain more insight from thinking about human-to-
human communications (like, sales).

39

For more on my approach to bug advocacy
• See my bug advocacy videos (freely reusable) at:

– http://www.testingeducation.org/BBST/videos/BugAdvocacy2008A.wmv
– http://www.testingeducation.org/BBST/videos/BugAdvocacy2008B.wmvp g g g y
– http://www.testingeducation.org/BBST/videos/BugAdvocacy2008C.wmv
– http://www.testingeducation.org/BBST/videos/BugAdvocacy2008D.wmv
– http://www.testingeducation.org/BBST/videos/BugAdvocacy2008E.wmvhttp://www.testingeducation.org/BBST/videos/BugAdvocacy2008E.wmv
– http://www.testingeducation.org/BBST/videos/BugAdvocacy2008F.wmv

• For model of additional instructional support, look at the Association
for Software Testing courses (free to members)($50 membership) at for Software Testing courses (free to members)($50 membership) at
http://www.associationforsoftwaretesting.org/drupal/courses

• (Soon, the supplementary course materials AST is developing for bug
d ill b k i d i /BBST f advocacy will move back to www.testingeducation.org/BBST, free

availability, but the coached online instruction requires the course)

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 40

Example 2 & 3
• IEEE standards and DoD approaches to testing favor

heavily scripted tests. These ARE slightly better than
worthless but they are enormously expensive and worthless, but they are enormously expensive and
grossly inadequate. They also provide weaker controls
for junior testers than you might expect. j y g p

• Assessing whether a program passed or failed a test is
usually a heuristic exercise. You can often tell whether y
some aspect of the program behaved as you expected,
but that's a far cry from knowing whether the
r ram is beha in c rrectl r misbeha inprogram is behaving correctly or misbehaving.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Scripted testing
A script specifies
• the test operations
• the expected results• the expected results
• the comparisons the human or machine should make

These comparison points arep p
• useful, but fallible and incomplete, criteria for deciding whether the

program passed or failed the test
S i t t lScripts can control
• manual testing by humans
• automated test execution or comparison by machinep y

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 42

Key benefits of scripts
Scripts require a big investment. What do we get back?
The scripting process provides opportunities to achieve several key
benefits:
• Careful thinking about the design of each test, optimizing it for its

most important attributes (power, credibility, whatever)
R i b h k h ld• Review by other stakeholders

• Reusability
• Known comprehensiveness of the set of testsKnown comprehensiveness of the set of tests
• If we consider the set sufficiently comprehensive, we can calculate as

a metric the percentage completed of these tests.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 43

No, learning support is NOT a benefit of scripts
J ifi f l i d i f hi i d Justifiers of manual scripted testing often assert this is a good way to
teach people about the software or about testing. These claims are
incompatible with our knowledge of instructional design and learning.
theory

In science / math
education, the
transfer problem is
driving fundamental
change in the
lclassroom

Students learn (and
transfer) better)
when they discover
concepts, rather
than by being told

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

them

44

Scripts: Poor tools for
adult learning
Pedagogy: study of teaching / Pedagogy: study of teaching /
learning of children
Andragogy: study of teaching /
learning of adultslearning of adults
University undergrads are in a
middle ground between the

h di d hild d h teacher-directed child and the
fully-self-directed adult
Both groups, but especially
adults, benefit from activity-
based and discovery-based
styles

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 45

Problem with scripts: Programs fail in many ways
B d t f D H ffBased on notes from Doug Hoffman

Program state

System state

Program state, including
uninspected outputs

System
dIntended inputs

System state

Monitored outputs

System state

under
test

Intended inputs

Configuration and

Monitored outputs

Impacts on connected
system resources

From other cooperating

devices / system resources

To other cooperating

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 46

From other cooperating
processes, clients or servers

To other cooperating
processes, clients or servers

Can you specify your test
fi i ?configuration?

• Does your test documentation
f ALL f h specify ALL of the processes

running on your computer?
• Does it specify what version of p y

each one?
• Do you even know how to tell

What version of each of – What version of each of
these you are running?

– When you (or your system)
last updated each one?

– Whether there is a later
update?

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

p

47

Can you specify all of the possible outcomes?

Program state Program state

System

System state and data System state and data

System
under

test
Intended inputs

Configuration and

Monitored outputs

Impacts on connected Configuration and
system resources

Impacts on connected
devices / system resources

From other cooperating
processes, clients or servers

To other cooperating
processes, clients or servers

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Based on notes from Doug Hoffman
48

Next, A little demonstration…
• http://www.geekarmy.com/Science/Crazy-Vision-Test.html
• http://www.dothetest.co.uk/
• http://viscog beckman uiuc edu/djs lab/demos html• http://viscog.beckman.uiuc.edu/djs_lab/demos.html

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 49

Inattentional blindness
• Most (or all) people are subject to this: Most (or all) people are subject to this:

– Varying estimates of how many people fail
to see the gorilla (etc.) in any particular
experiment but people who show no IB experiment, but people who show no IB
in one demonstration often miss the
figure in the next

Wh i i b i i l • What is important about inattentional
blindness is NOT
– Selective attention

° (we’ve known about that for years and
years and years)

• It is that IB demonstrates:• It is that IB demonstrates:

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 50

Blind spots and unexpected outcomes
Th h f l bl dThe phenomenon of inattentional blindness
• humans (often) don't see what they don't pay attention to
• programs (always) don't see what they haven't been told to • programs (always) don t see what they haven t been told to

pay attention to
This is often the cause of irreproducible failures. We paid
attention to the wrong conditionsattention to the wrong conditions.
• But we can't pay attention to all the conditions

The 1100 embedded diagnosticsg
• Even if we coded checks for each of these, the side effects

(data, resources, and timing) would provide us a new
context for the Heisenberg principlecontext for the Heisenberg principle

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 51

Selective processing / biases
• Obama versus Clinton versus McCain
• Dartmouth / Princeton football demonstration

Hastorf A H & Cantril H (1954) They saw a – Hastorf, A. H. & Cantril, H. (1954). They saw a
game: A case study. Journal of Abnormal and
Social Psychology, 49, 129-134.
S k / N k di f fi i – Smoker / Nonsmoker studies of confirmation
bias

– http://en.wikipedia.org/wiki/Confirmation_bias
• People will interpret what they see consistently

with what they expect / want
Expected results drive expectancies– Expected results drive expectancies

• If you set testers to believe they will find failures,
they will find more failures and miss fewer ones

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 52

Scripts are hit and miss …
People are finite capacity information processors
• We pay attention to some things

and therefore we do NOT pay attention to others– and therefore we do NOT pay attention to others
– Even events that “should be” obvious will be missed if we are

attending to other things.
Computers focus only on what they are programmed to look at:
• They are inattentionally blind by design

Scripts bias you to
miss the same things every time.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 53

g y

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 54

Example 4
• Software engineering measurement deviates
from theory of measurement in most other
fields by underemphasizing construct validity
(by not asking how we know whether the
" " ll h "measurement" actually measures what we are
trying to measure). The result is predictable

i hi f d th b d t f t i mischief, and the abandonment of metrics
programs at most non-government-contractor
companiescompanies.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Test-related metrics
M h Most testing metrics are human
performance metrics
• How productive is this tester?
• How good is her work?
• How good is someone else’s

work?work?
• How long is this work taking

them?

These are well studied questions in
the social sciences and not well
t di d h i th h studied when we ignore the humans

and fixate on the computer.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

We ignore the human issues at risk.

56

Example: Bug find rates
S l l f i i h b Some people measure completeness of testing with bug curves:
• New bugs found per week ("Defect arrival rate")
• Bugs still open (each week)• Bugs still open (each week)
• Ratio of bugs found to bugs fixed (per week)

k
gs

 P
er

 W
ee

B
ug

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 57

Week

Weibull reliability model
Bug curves can be useful progress indicators, but some people fit the data to
th ti l t d t i h th j t ill l ttheoretical curves to determine when the project will complete.

The model’s assumptions

1. Testing occurs in a way similar to the way the software will be operated.

2. All defects are equally likely to be encountered.

3. Defects are corrected instantaneously, without introducing additional
defects.

4. All defects are independent.

5. There is a fixed, finite number of defects in the software at the start of
testingtesting.

6. The time to arrival of a defect follows the Weibull distribution.

7. The number of defects detected in a testing interval is independent of the
b d t t d i th t ti i t l f fi it ll ti f number detected in other testing intervals for any finite collection of

intervals.

• See Erik Simmons, When Will We Be Done Testing? Software Defect
Arrival Modeling with the Weibull Distribution

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

Arrival Modeling with the Weibull Distribution.

58

The Weibull model
I think it’s absurd to rely on a distributional model (or any model) I think it s absurd to rely on a distributional model (or any model)
when every assumption it makes about testing is obviously false.
One of the advocates of this approach points out that

“Luckily, the Weibull is robust to most violations.”
• This illustrates the use of surrogate measures—we don’t have g

an attribute description or model for the attribute we really
want to measure, so we use something else, that is allegedly
“robust”, in its place. This can be very dangerous robust , in its place. This can be very dangerous

• The Weibull distribution has a shape parameter that allows it to
take a very wide range of shapes. If you have a curve that

ll i h f ll (d) i i generally rises then falls (one mode), you can approximate it
with a Weibull.

But how should we interpret an adequate fit to an otherwise

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

But how should we interpret an adequate fit to an otherwise
indefensible model?

59

Side effects of bug curves
When development teams are pushed to show project bug curves
that look like the Weibull curve, they are pressured to show a
rapid rise in their bug counts, an early peak, and a steady decline p g , y p , y
of bugs found per week.
In practice, project teams, including testers, in this situation often
d t d f ti l th d d i thi th t ill b b d f th adopt dysfunctional methods, doing things that will be bad for the

project over the long run in order to make the numbers go up
quickly.

• For more on measurement dysfunction, read Bob Austin’s
book, Measurement and Management of Performance in
OrganizationsOrganizations.

• For more observations of problems like these in reputable
software companies, see Doug Hoffman's article, The Dark Side
f S f M

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

of Software Metrics.

60

Side effects of bug curves: Early testing
W

ee
k

B
ug

s
Pe

r W

Predictions from these curves are based on parameters estimated from

Week

Predictions from these curves are based on parameters estimated from
the data. You can start estimating the parameters once the curve has hit
its peak and gone down a bit.
The sooner the project hits its peak the earlier we would predict the The sooner the project hits its peak, the earlier we would predict the
product will ship.
So, early in testing, the pressure on testers is to drive the bug count up

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

quickly, as soon as possible.

61

Side effects of bug curves
Earlier in testing, the pressure is to increase bug counts. In
response, testers will:
• Run tests of features known to be broken or incomplete• Run tests of features known to be broken or incomplete.
• Run multiple related tests to find multiple related bugs.
• Look for easy bugs in high quantities rather than hard bugs.Look for easy bugs in high quantities rather than hard bugs.
• Less emphasis on infrastructure, automation architecture, tools

and more emphasis of bug finding. (Short term payoff but long
 i ffi i)term inefficiency.)

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 62

Side effects of bug curves: Later in testing
After we get past the peak, the expectation is that testers will find fewer
bugs each week than they found the week before.
Based on the number of bugs found at the peak, and the number of g p ,
weeks it took to reach the peak, the model can predict the later curve,
how many bugs per week in each subsequent week.

k
ug

s
Pe

r W
ee

k

Week

B
u

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 63

ee

Side effects of bug curves
Later in testing, the pressure is to decrease the new bug rate: Later in testing, the pressure is to decrease the new bug rate:
• Run lots of already-run regression tests.
• Don’t look as hard for new bugs.
• Shift focus to appraisal, status reporting.
• Classify unrelated bugs as duplicates.

Cl l t d b d li t (d l d) hidi k d t b t • Class related bugs as duplicates (and closed), hiding key data about
the symptoms / causes of the problem.

• Postpone bug reporting until after the measurement checkpoint
(milestone). (Some bugs are lost.)

• Report bugs informally, keeping them out of the tracking system.
• Testers get sent to the movies before measurement checkpoints• Testers get sent to the movies before measurement checkpoints.
• Programmers ignore bugs they find until testers report them.
• Bugs are taken personally.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

g p y
• More bugs are rejected.

64

Bad models are counterproductive

Shouldn't We Strive ForShouldn t We Strive For
This ?

Week

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 65

Let’s Sum Up
Is testing ONLY concerned with the human issues associated with product
development and product use?

• Of course not

• But thinking in terms of the human issues leads us into interesting questions
about

– what tests we are running (and why)g (y)

– what risks we are anticipating

– how/why these risks are important, and

h d h l li h i f i h d – what we can do to help our clients get the information they need to
manage the project, use the product, or interface with other
professionals.

Th FUNDAMENTALLY DIFFERENT ti f th ALSO These are FUNDAMENTALLY DIFFERENT questions from the ALSO
CRITICALLY IMPORTANT questions about implementation quality.

The tools are different, the concepts are different, the frames of reference are
different I don't know how to teach these (WELL) together in a single course

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner

different, I don t know how to teach these (WELL) together in a single course.

66

About Cem Kaner
• Professor of Software Engineering, Florida Tech
• Research Fellow at Satisfice, Inc.

I’ve worked in all areas of product development (programmer, tester, p p (p g , ,
writer, teacher, user interface designer, software salesperson,
organization development consultant, as a manager of user
documentation, software testing, and software development, and as an

 f i h l f f li) attorney focusing on the law of software quality.)
Senior author of three books:
• Lessons Learned in Software Testing (with James Bach & Bret g (J

Pettichord)
• Bad Software (with David Pels)
• Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).

My doctoral research on psychophysics (perceptual measurement)
nurtured my interests in human factors (usable computer systems) and
measurement theory.

SW Testing Curriculum Copyright © 2008-2009 Cem Kaner 67

y

