Using Web-CAT to Grade Students on
How Well they Test Their Own Code

\ P . ol 11
RERR Gt S SN S ¢ o N N > N
PSP % 3 " A N N\~
ax ET AR o O s D 453" 5y 3
] { g } s P AL o, W |45 >

3 < \/\ - L’\\.‘ \.'v \./\ e \,_,/% NNy £ __ o R Y e R N

3 ! 1

1 MY A A e AT AL A % Vi A DYEY A BN EA N

Stephen Edwards
edwards@cs.vt.edu

Virginia Tech
Department of Computer Science

http://web-cat.org/

NSF DUE-0633594 and DUE-0618663

What is Web-CAT?

 Web-CAT)
(

A plug-in-based web application

Supports electronic submission and
automated grading of programming
assignments

Fully customizable, scriptable
grading actions and feedback
generation

Lots of support for grading students
based on how well they test their
own code

Who uses Web-CAT?

= At 38 institutions and growing

= Approaching 10,000 users worldwide

= Since 2003, Virginia Tech’s server alone has
processed approximately:

264,818 program submissions
By 4,135 students
In 186 course sections

Some shameless plugs ...

* |n addition to Web-CAT itself, our research

group has a number of other testing-related
tools available, including:

CxxTest (with plug-ins for Eclipse and
Visual Studio)

Dereferee

Electronic submission plug-ins for
Eclipse and Visual Studio

More educators are adding software
testing to their programming courses

= Now it’s almost routine

Tools like JUnit, and XUnit frameworks for other
languages, make it much easier

Built-in support by many mainstream and
educational IDEs makes it much easier

Many instructors have also experimented with
automated grading based on such testing
frameworks

Here are our experiences in teaching test-driven
development with the help of an automated grader
over the past 3 years

| Why have we added software testing across
our programming core?

= Students cannot test their own
CS1 code

= Want a culture shift in student

Testing behavior

Practices
= Asingle upper-division course
would have little impact on
practices in other classes

= So: Systematically incorporate
testing practices across many
courses

Software testing helps students frame
and carry out experiments

= The problem: too much focus on synthesis and
analysis too early in teaching CS

= Need to be able to read and comprehend source code

= Envision how a change in the code will result in a
change in the behavior

= Need explicit, continually reinforced practice in
hypothesizing about program behavior and then
experimentally verifying their hypotheses

Expect students to apply testing skills
all the time

= Expect students to test their own work

= Empower students by engaging them |r/1/l
the process of assessing their own

programs

= Require students to demonstrate the

correctness of their own work through
testing

E

|

(

= Do this consistently across many courses

Test-driven development is very
accessible for students

Also called “test-first coding”

Focuses on thorough unit testing at the level
of individual methods/functions

“Write a little test, write a little code”

Tests come first, and describe what is
expected, then followed by code, which must
be revised until all tests pass

Encourages lots of small (even tiny) iterations

Students can apply TDD and get
immediate, useful benefits

Conceptually, easy for students
to understand and relate to

Increases confidence in code

Increases understanding
of requirements

Preempts “big bang” integration

We use Web-CAT to automatically process
student submissions and check their work

= Web application written in 100% pure Java

Deployed as a servlet

Built on Apple’s WebObjects ‘

Uses a large-grained plug-in architecture internally,
providing for easily extensible data model, Ul, and
processing features

Web-CAT's strengths are targeted at
broader use

Security: mini-plug-ins for different authentication
schemes, global user permissions, and per-course role-
based permissions

Portability: 100% pure Java servlet for Web-CAT engine

Extensibility: Completely language-neutral, process-
agnostic approach to grading, via site-wide or
instructor-specific grading plug-ins

Manual grading: HTML “web printouts” of student
submissions can be directly marked up by course staff
to provide feedback

Grading plug-ins are the key to process
flexibility and extensibility in Web-CAT

Processing for an assignment consists of a “tool
chain” or pipeline ¢floneror' moresgrading plug-ins

The instructor has complete control over which plug-
ins appear.in the pipeline; in‘-what order, and with
what parameters

A simple and flexible, yet powerful'way for plug-ins
to communicate with Web-CAT, with each other

We have a number ofiexisting plug-ins for Java, C++,
Scheme, Prelog, PascaljStandard ML, ..

Instructors can write and upload their own plug-ins

Plug-ins can be wifitten in any language executable
on the server (we“tsually use Perl)

The best-known plug-in grades Java
assignments that include student tests

ANT-based build of arbitrary Java projects
PMD and Checkstyle static analysis

ANT-based execution of student-written JUnit tests
Carefully designed Java security policy

Clover test coverage instrumentation

ANT-based execution of optional instructor reference
tests

Unified HTML web printout

Highly configurable (PMD rules, Checkstyle rules,
supplemental jar files, supplemental data files, java
security policy, point deductions, and lots more)

Web-CAT provides timely, constructive
feedback on how to improve

* |ndicates where code
can be improved

= |ndicates which parts
were not tested well
enough

Provides as many
“revise/ resubmit”
cycles as possible

File Edit

View Favorites Tools Help

* wall, so

public void positionForOddColumni)
{

turnleft();

if | frontIsClear()):

(!) Error [PMD]: -2
Always use curly braces around the body of an if staterment. Omitting them makes It

easler to introduce bugs as the code is edited over time. They also improve readability.

& Warning [Checkstyle]
Empty staternent.

{
move ()
turnleft();

* 4 180-degree

public void turniround()

{ ILine 110: method not entered.|
turnLefti);

turnLefti);

7 public void turnRighti)

0 Error [Checkstyle]: -2
Missing a Javadoc cormrment,

{
turnkeft();
turnkeft();
turnleft();

[E] Done

Assessing student tests is tricky, so we
use complementary methods

First, we measure how many of the student’s own
tests pass

Second, we instrument student code and measure
code coverage while the student’s tests are running

Third, we use instructor-provided reference tests to
cross-check the student’s tests

We multiply the percentages together, so students
must excel at all three to increase their score

Students improve their code quality
when using Web-CAT

Newly written “untested” code

o
o
-
n
=
v
=]
=
m

Commerical-aualitv_code
= T T ha f hu J 1T 1

|t Bt el

| |

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Students Ranked by Defect Rate

| | | | |

Students start earlier and finish earlier

Submissions Relative to Due Date

— o
© o

(7))
b
E E
= 0
2 >

(7))

= [,rﬂﬂ [hm) Tﬂ

More +9 +8 7 +6 +5 +4 +3 +1 Due -

Days Before Due Date

O With Testing [0 Without Testing

Let’s see it working!

= We’ll walk through exactly how to get started

= Later, you can use the workshop materials from
our SIGCSE 2009 workshop:

http://web-cat.org

Time for a break

= Any questions at this point?

= Anything in particular you definitely want to

see me demonstrate?

An inside peek at some “really cool
things”!

Testing stdout output

What about stdin?

_ess strict comparisons
Regular expressions, substrings

Reflection-based tests

Walkthrough wrap-up

= Time for questions about the steps we have
demonstrated ...

= ... Oor questions about how to use it with your
own assignments

Assessing the difficulty of reference tests

Difficulty of Instructor Test Cases

testEquals
testDepthCrawlings
testDepthCrawlingd
testDepthCrawlingC
testDepthCrawlingD
testDepthCrawdingE

testCrawling
testStoreLink
testGetCount

Iy
R

testGetURL

=
#

testHasURL
testSetURL

=
#

testDefaultConstructor Crawler
testPrecondiions

test\WebPage

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Assessing reference test discrimination

Discriminating Ability of Instructor Test Cases

testCrawling
testDefaultConstructor Crawler
testDepthCrawlinga
testDepthCrawling®
testDepthCrawlingC
testDepthCrawlingD
testDepthCrawlingE
testGetURL
testPreconditions
testSetURL
test\WebPage
testEquals
testGetCount
testStorelink

testHasURL

-1.00 080 -060 -0.40 -0.20 000 020 040 060 080 1.00

The most important step in writing
testable assignments is ...

= Learning to write tests yourself

Writing an instructor’s solution with tests that
thoroughly cover all the expected behavior

Practice what you are teaching/preaching

Extra effort before assignment is “opened” (more
prep time) but less effort after assignment is due
(less grading time)

Lessons for writing assignments
intended for automatic grading

Requires greater clarity and specificity

Requires you to explicitly decide what you wish to test,
and what you wish to leave open to student
interpretation

Requires you to unambiguously specify the behaviors
you intend to test

Requires preparing a reference solution before the
project is due, more upfront work for professors or TAs

Grading is much easier as many things are taken care
by Web-CAT; course staff can focus on assessing design

Areas to look out for in writing
“testable” assignments

= How do you write tests for the following:
Main programs

Code that reads/write to/from stdin/stdout
or files

Code with graphical output

Code with a graphical user interface

It is time for any final questions ...

About anything covered ...
About how we’ve used these techniques in courses

About how we start our freshmen out in the very
first lab

About the availability of Web-CAT

... Or anything else you want to ask

Visit our SourceForge project!

http://web-cat.org/ SOURCEE” RGE"
et

Info about using our automated
grader, getting trial accounts, etc.

Movies of making submissions, §e§:ﬁ$p SES

setting up assignments, and more

Custom Eclipse and Visual Studio
plug-ins for C++-style TDD

Links to our own Eclipse feature
site

