
Stephen Edwards
edwards@cs.vt.edu

Virginia Tech
Department of Computer Science

http://web-cat.org/

NSF DUE‐0633594 and DUE-0618663 

  A plug-in-based web application
  Supports electronic submission and

automated grading of programming
assignments

  Fully customizable, scriptable
grading actions and feedback
generation

  Lots of support for grading students
based on how well they test their
own code

  At 38 institutions and growing

  Approaching 10,000 users worldwide
  Since 2003, Virginia Tech’s server alone has

processed approximately:

  264,818 program submissions
  By 4,135 students
  In 186 course sections

  In addition to Web-CAT itself, our research
group has a number of other testing-related
tools available, including:

  CxxTest (with plug-ins for Eclipse and
Visual Studio)

  Dereferee
  Electronic submission plug-ins for

Eclipse and Visual Studio

  Now it’s almost routine

  Tools like JUnit, and XUnit frameworks for other
languages, make it much easier

  Built-in support by many mainstream and
educational IDEs makes it much easier

  Many instructors have also experimented with
automated grading based on such testing
frameworks

  Here are our experiences in teaching test-driven
development with the help of an automated grader
over the past 3 years

  Students cannot test their own
code

  Want a culture shift in student
behavior

  A single upper-division course
would have little impact on
practices in other classes

  So: Systematically incorporate
testing practices across many
courses

CS1

CS2

OO
Design

Data
Struct

Testing
Practices

  The problem: too much focus on synthesis and
analysis too early in teaching CS

  Need to be able to read and comprehend source code

  Envision how a change in the code will result in a
change in the behavior

  Need explicit, continually reinforced practice in
hypothesizing about program behavior and then
experimentally verifying their hypotheses

  Expect students to test their own work

  Empower students by engaging them in
the process of assessing their own
programs

  Require students to demonstrate the
correctness of their own work through
testing

  Do this consistently across many courses

  Also called “test-first coding”

  Focuses on thorough unit testing at the level
of individual methods/functions

  “Write a little test, write a little code”

  Tests come first, and describe what is
expected, then followed by code, which must
be revised until all tests pass

  Encourages lots of small (even tiny) iterations

  Conceptually, easy for students
to understand and relate to

  Increases confidence in code

  Increases understanding
of requirements

  Preempts “big bang” integration

  Web application written in 100% pure Java

  Deployed as a servlet

  Built on Apple’s WebObjects

  Uses a large-grained plug-in architecture internally,
providing for easily extensible data model, UI, and
processing features

  Security: mini-plug-ins for different authentication
schemes, global user permissions, and per-course role-
based permissions

  Portability: 100% pure Java servlet for Web-CAT engine

  Extensibility: Completely language-neutral, process-
agnostic approach to grading, via site-wide or
instructor-specific grading plug-ins

  Manual grading: HTML “web printouts” of student
submissions can be directly marked up by course staff
to provide feedback

  Processing for an assignment consists of a “tool
chain” or pipeline of one or more grading plug-ins

  The instructor has complete control over which plug-
ins appear in the pipeline, in what order, and with
what parameters

  A simple and flexible, yet powerful way for plug-ins
to communicate with Web-CAT, with each other

  We have a number of existing plug-ins for Java, C++,
Scheme, Prolog, Pascal, Standard ML, …

  Instructors can write and upload their own plug-ins
  Plug-ins can be written in any language executable

on the server (we usually use Perl)

  ANT-based build of arbitrary Java projects

  PMD and Checkstyle static analysis

  ANT-based execution of student-written JUnit tests
  Carefully designed Java security policy

  Clover test coverage instrumentation

  ANT-based execution of optional instructor reference
tests

  Unified HTML web printout
  Highly configurable (PMD rules, Checkstyle rules,

supplemental jar files, supplemental data files, java
security policy, point deductions, and lots more)

  Indicates where code
can be improved

  Indicates which parts
were not tested well
enough

  Provides as many
“revise/ resubmit”
cycles as possible

  First, we measure how many of the student’s own
tests pass

  Second, we instrument student code and measure
code coverage while the student’s tests are running

  Third, we use instructor-provided reference tests to
cross-check the student’s tests

  We multiply the percentages together, so students
must excel at all three to increase their score

Newly written “untested” code

 Commerical-quality code

  We’ll walk through exactly how to get started
  Later, you can use the workshop materials from

our SIGCSE 2009 workshop:

 http://web-cat.org

  Any questions at this point?

  Anything in particular you definitely want to
see me demonstrate?

  Testing stdout output
  What about stdin?
  Less strict comparisons
  Regular expressions, substrings
  Reflection-based tests

  Time for questions about the steps we have
demonstrated …

  … or questions about how to use it with your
own assignments

  Learning to write tests yourself

  Writing an instructor’s solution with tests that
thoroughly cover all the expected behavior

  Practice what you are teaching/preaching

  Extra effort before assignment is “opened” (more
prep time) but less effort after assignment is due
(less grading time)

  Requires greater clarity and specificity

  Requires you to explicitly decide what you wish to test,
and what you wish to leave open to student
interpretation

  Requires you to unambiguously specify the behaviors
you intend to test

  Requires preparing a reference solution before the
project is due, more upfront work for professors or TAs

  Grading is much easier as many things are taken care
by Web-CAT; course staff can focus on assessing design

  How do you write tests for the following:

  Main programs

  Code that reads/write to/from stdin/stdout
or files

  Code with graphical output

  Code with a graphical user interface

  About anything covered ...

  About how we’ve used these techniques in courses

  About how we start our freshmen out in the very
first lab

  About the availability of Web-CAT

  ... Or anything else you want to ask

  http://web-cat.org/

  Info about using our automated
grader, getting trial accounts, etc.

  Movies of making submissions,
setting up assignments, and more

  Custom Eclipse and Visual Studio
plug-ins for C++-style TDD

  Links to our own Eclipse feature
site

