WISTPC-09 Session A: Unit Test Lab

Goals

To be able to:

1. Create a code skeleton for building JUnit tests to validate an existing Java class.

2. Implement a test fixture to allow the reuse of common test variables and test data.

3. Use assertions to compare the actual output of variables with their expected values.

4. Test for behavior that involves throwing Java exceptions.
5. Run JUnit tests within Eclipse and understand the output of the failure trace.
Steps

a. Launch Eclipse and Create a New Project

b. In Windows, Click Start → Programs → Developer Tools → Eclipse

c. From the Top Menu Bar, Click File → New → Project
d. Select 'Java Project' and Click 'Next'
e. For the Project Name, enter 'UnitTestDemo1'
f. In Contents, Select 'Create project from existing source'
g. For the directory, Click Browse and select the 'UnitTestDemo1' folder
Note: Your presenter will provide you with the path to the directory.

[image: image1.png]Browse For Folder =<2

Choose a directory for the project contents:

0 pabiic
18 Computer

il » & Network

o . it Tutorials
5/ UnifTestbemt
5 b UnifTestoemo?
| | >0 westT

€|

Eoder: UnifTestDemol.

| (enenroo] (o] (Ccanc]

h. Click OK, and then Click Finish

Note: In the Package Explorer (left pane) you should now see the project.
2. Create a New JUnit Test for the BankAccount Class
a. Right Click “BankAccount.java”, Select New → JUnit Test Case

[image: image2.emf]
b. Select the radio button for ‘New JUnit4 Test’

c. In the name field type 'MyBankAccountTest'
d. Mark the checkboxes for generating setup() and teardown() method stubs, and click 'Next'.

e. Mark the checkbox for the BankAccount class

[image: image3.emf]
Note: All of the methods in the BankAccount class should be marked.

f. Click 'Finish'
3. Declare Test Variables and Implement Test Fixture
a. Declare two bank account instance variables for the purposes of testing .

e.g.,
 private BankAccount account1;

private BankAccount account2;

b. Initialize the test accounts within the setUp() method as follows:

i. account1 – use the default constructor,
e.g. account1 = new BankAccount();
ii. account2 – use the user-defined constructor to create a new account with a balance of $600.00,

e.g., account2 = new BankAccount(600.0);
c. Deallocate the test variables within the tearDown() method.
4. Write Tests using JUnit Assertions
a. Use the assertEquals(double expected,double actual) from the Assert API to write a test for the default constructor of BankAccount.java.
b. In the method body of testBankAccount insert the following statement: assertEquals(50.0, account1.getBalance());
c. Try writing some tests for:

i. the other constructor, testBankAccountDouble
ii. the deposit, withdraw, and transfer methods
iii. the premium status verification method, testIsPremiumAccount
5. Write a Test that checks if an Exception has been Thrown
a. Create a new test method named testWithdraw2() that withdraws $0.01 from account1, and checks for an InsufficientFundsException.

i. Use the @Test annotation to create a new test method.
ii. Insert the method signature, i.e., public void testWithdraw2()
iii. Call the withdraw method, i.e., account1.withdraw(0.01)
iv. Append the @Test annotation with the expected exception clause, i.e, @Test(expected=InsufficientFundsException.class)
6. Run your JUnit Test and View the Results
a. Right Click “MyBankAccountTest.java”, Select Run As → JUnit Test
b. Use the JUnit tab (left pane) to view the test results and failure trace
1.

2.

3.

_1298558601.psd

_1298559954.psd

