
Using a Web-Based Repository to Integrate
Testing Tools into Programming Courses

Peter J. Clarke, Andrew A. Allen

School of Computing and Info. Sciences
Florida International University

Miami, FL 33199, USA

{clarkep, aalle004}@cis.fiu.edu

Tariq M. King

Dept. of Computer Science
North Dakota State University

Fargo, ND 58108, USA

tariq.king@ndsu.edu

Edward L. Jones

Dept. of Computer and Info. Sciences
Florida A&M University

Tallahassee, FL 32307, USA

ejones@cis.famu.edu

Prathiba Natesan

Department of Educational Psychology
University of North Texas
Denton, TX 76203, USA

prathiba.natesan@unt.edu

Abstract
Improving the quality of software developed in the 21st cen-
tury is one of the major challenges in the software indus-
try. Addressing this problem will require that academic in-
stitutions play a key role in training developers to develop
high quality software. Unfortunately, students and instruc-
tors continue to be frustrated by the lack of support provided
when selecting appropriate testing tools and program ana-
lyzers to verify programs under development.

In the paper we present an approach that integrates the use
of software testing tools into programming and software en-
gineering courses. The approach consists of three phases, de-
veloping an online repository with learning resources, train-
ing instructors in the area of testing techniques and tools,and
integrating the use of testing tools into various programming
courses. We also present the results of the first instructors’
workshop and for studies on integrating testing tools into
two courses, CS2 and Software Engineering (SE).

Categories and Subject Descriptors K.3.2 [Computer and
Information Science Education]: Miscellaneous

General Terms Experimentation

Keywords Software Testing, Unit Testing, Programming
Courses, Computer Science Education

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c⃝ 2010 ACM 978-1-4503-0240-1/10/10. . . $10.00

1. Introduction
The size and complexity of software systems continue to
grow as software becomes more pervasive and ubiquitous.
Ensuring the quality of these software systems in the 21st
Century will require changes to the development strategies
and improvement to the pedagogy used to teach these strate-
gies in academia. Testing continues to be the primary tech-
nique used to ensure the development of high quality soft-
ware, but recent studies [2, 30] indicate that major improve-
ments in software testing are needed. Any comprehensive
approach to improving the quality of software systems de-
veloped in the future requires that academic institutions play
a vital role in training students how to test software, and
making them aware of the tools available to support software
testing. Unfortunately, students and instructors continue to
be frustrated by the lack of support provided when select-
ing appropriate testing tools and program analyzers to verify
programs under development.

Research data on the use of software testing tools by stu-
dents and instructors to support pedagogy are scarce. Dur-
ing the last decade several researchers [14, 16, 19–21] have
indicated that little or no coverage is given to software de-
sign and testing techniques in many academic CS programs.
One of the first Computer Science (CS) and Information
Technology (IT) courses that students encounter in many
programs in the nation is “CS1 - Introduction to Program-
ming”. It is in CS1 that students should be exposed to the
tools that have the potential to improve the quality of the
code they write. Exposing students to testing techniques and
tools during courses early in the CS/IT curricula would al-
low them to gain the necessary practice and experience re-
quired to produce high quality software. There are also re-

ports that little attention is given to software testing even
in software engineering (SE) courses. One aspect not fully
addressed in the research papers on integrating testing into
CS/IT courses is the preparation required to introduce pro-
gramming course instructors to the area of software testing.
To support the aforementioned claim, Lethbridge et al. [24]
raise the broader question of how many instructors teaching
core SE courses have a deep background in the field.

In this paper we present an approach that supports the
integration of testing into programming courses supported
by a web-based repository of testing tools. The approach
consists of three phases: (1) developing an online portal of
learning resources that supports pedagogy in the area of
software testing; (2) holding a series of annual workshops
for instructors to introduce them to software testing and the
learning resources available through the online portal; and
(3) integrating the use of testing tools into programming and
SE courses. We report on the phases of the project mentioned
above identifying the results obtained from the studies that
have been conducted to date.

The remainder of the paper is organized as follows: in
Section 2 we describe techniques in the literature that inte-
grates testing into programming courses. Section 3 presents
our approach and Section 4 describes the results of our first
instructors’ workshop and studies conducted in CS2 and SE
courses. Section 5 describes the related work and we con-
clude in Section 6.

2. Testing in Programming Courses
Members of the academic community and software industry
have expressed interest in integrating testing into the curric-
ula of programming courses. The most recent approach be-
ing employed by instructors is Test Driven Learning (TDL),
or teaching Test Driven Development (TDD). Such ap-
proaches involve using automated testing tools to motivate
students to learn about software testing, while improving
their testing skills and ability to develop quality software. In
this section we describe some of the approaches being used
by instructors to integrate testing into programming courses,
and summarize the results of applying these approaches as
reported in the literature.

2.1 Approaches

Goldwasser [16] proposed a technique that required minor
modifications to the course structure to include the submis-
sion of test sets with the source code for assignments. The
source code of each assignment is then executed on each test
set submitted. This approach uses mainly black-box testing
[27]. Goldwasser refers to this approach as a “little gim-
mick” and states that the approach can be applied to most
programming courses at all level of the curriculum. A sig-
nificant benefit for instructors cited in this approach is its
amenability to existing programming assignments. This ap-
proach requires unambiguous specifications and automated

grading tools to support medium to large classes [16]. As
such an instructor would need to learn how to create such
assignments and use these tools.

Edwards [7, 8] observed that most beginner students use
the trial-and-error approach to program correctness. How-
ever, even though natural and sufficient for simple programs,
this approach does not lead to the development of higher
order problem solving skills needed to develop more com-
plex software. Students need practice applying the scientific
method: observing the behavior of software, hypothesizing
cause-effect relationships in the software, and experiment-
ing to verify hypotheses. Software testing can play an im-
portant role in learning to develop software, but only when
students are provided with a special environment that pro-
vides frequent feedback on their performance forming hy-
potheses and verifying them. Web-CAT, developed by Ed-
wards, receives a student’s program code and test set, and
provides as feedback an overall score (grade) and three per-
formance measures: (1) code correctness based on the num-
ber of student-supplied test cases that passed; (2) code test
completeness based on code coverage; and (3) problem test
completeness and validity based on a teacher-provided test
set.

Janzen et al. [20] present test-driven learning (TDL) as
a pedagogical tool and discuss the incorporation of TDL
into multiple levels of the CS and SE curricula. They pro-
pose that TDL can be applied as early as the first day of
the first programming course, but that it should not com-
pete with other approaches in introductory courses. Instead,
TDL should integrate well with other programming-first ap-
proaches such as imperative-first, objects-first, functional-
first, event-driven, among others. An experiment was con-
ducted in two CS1 sections, taught by the same instructor,
to compare the scores between TDL students and non-TDL
students.

Elbaum et al. [11] state that it continues to be difficult
to integrate testing into early programming courses due to
the lack of appropriate courseware materials that can be di-
rectly used by instructors. Therefore in an effort to promote
early integration of software testing into early programming
courses, the authors developed a hands-on web-based tuto-
rial namedBug Hunt. The features of Bug Hunt provide both
instructors and students with the ability to: (1) practice the
fundamentals of testing while providing students with feed-
back; (2) review the material in the tutorial at their pace;
(3) configure the tutorial to accommodate the instructor’s re-
quirements; and (4) automatically assess the students’ per-
formance by the instructor.

Schaub [31] describes an instructor’s experience when
introducing testing into a CS1 course that focuses on web
application development. The author combines the use of a
web API, an appropriate development environment, and a
TDD methodology to emphasize design and testing. TDD
was employed to get students to focus on the design of the

core application API, while writing automated unit tests be-
fore implementing the application’s functionality. For as-
signments, students were provided with a specification of
the classes and methods to be developed, together with an
initial unit test set that must pass for the solution to be con-
sidered acceptable. To reduce the effort needed for students
to adopt unit testing techniques in CS1, the approach used
by Schaub [31] did not require students to learn xUnit-style
frameworks [33] in CS1 but instead write stand-alone unit
tests as a console application.

The work by Desai et. al [5] demonstrate how TDD can
be integrated into CS1/CS2 course curricula. The approach
attempts to introduce testing without burdening the students
by giving them full JUnit [15] test suites for projects and labs
early. Initially, JUnit tests are supplied for a Java class simi-
lar to one the students would have to test, e.g., test cases were
supplied for aTriangle class, and the students had to write
the test cases for aRectangle class. However, in subsequent
projects students were expected to write all the tests them-
selves without the aid of test examples. Students were also
taught the value of reusable automated unit tests as projects
built upon previous ones. Therefore, some written tests did
not have to change but just re-run to ensure that changes
did not break any of the previously tested functionality. Two
controlled experiments were conducted to evaluate the intro-
duction of TDD into a CS1/CS2 course.

2.2 Summary of Results

Some observations from the aforementioned works on in-
tegrating testing into programming courses can be summa-
rized as follows:

∙ Careful structuring of assignments is key in getting stu-
dents to adopt the test-driven approach naturally.

∙ The use of adequate automatic grading tools is essential
for: (1) reducing the instructor’s course load, and (2)
providing students with helpful feedback on the adequacy
of the testing done in their assignments.

∙ Simply re-writing course materials to incorporate TDD,
even though effective, is not ideal. Re-ordering and re-
emphasis of topics is recommended.

∙ It can be difficult to determine what kind of curricu-
lum changes are required, how drastically projects must
change and what will be the effect on the students.

∙ Aside from the one-time setup cost, instructor effort is
not necessarily increased with the introduction of TDL,
and in some cases may even decrease thanks to the op-
portunity of automated grading.

3. Using WReSTT to Support Pedagogy
There have been several approaches used to integrate testing
into programming courses as described in the previous sec-
tion. Although these approaches expect instructors to par-
ticipate in this process, there needs to be more work done

to assist instructors in gaining the necessary knowledge on
testing to support the integration. In addition to this knowl-
edge transfer, it is important to complement this integration
with appropriate tools, course materials and other resources.
In this section we describe an approach consisting of three
phases that integrates testing into programming courses.

3.1 Web-Based Repository

Phase one of our approach consists of developing an online
portal of learning resources that supports pedagogy in the
area of software testing. The main objective of the online
portal is to increase the number of users at academic institu-
tions that currently have access to vetted learning materials,
including tutorials on software testing tools, that support the
integration of testing into programming courses. We have
created such a repository known asWeb-based Repository of
Software Testing Tools (WReSTT)1 [35] that contains tutori-
als on software testing tools and links to other materials on
software testing. WReSTT currently contains learning mate-
rials for the following tools:

∙ Cobertura - a free Java tool that calculates the percentage
of code accessed by tests [3].

∙ CppUnit - a C++ unit testing framework [13].

∙ EclEmma - a free Java code coverage tool for Eclipse
[17].

∙ JDepend - a tool that traverses Java class file directories
and generates design quality metrics for each Java pack-
age [1].

∙ JUnit - a unit testing framework for the Java program-
ming language [15].

∙ SWAT - the Simple Web Automation Toolkit (SWAT) is a
library written in C# designed to provide an interface to
interact with several different web browsers [32].

∙ Rational Functional Tester - an automated functional and
regression testing tool [18].

Figure 1 shows the web page containing the learning ma-
terials for JUnit [15]. The top of the page contains links
to the registration page, the forums, events related to the
project, sponsors of the project, links to other learning mate-
rials, and the contact information for the page. The left side
of the page is the sidebar that allows users to navigate around
the portal and a list of participating institutions. The center
page contains the content for JUnit, including a link to the
official JUnit web site, and video tutorials on setting up JUnit
in Eclipse and creating test cases for a simple example pro-
gram. The right side of the page contains the links to other
testing resources and recent events.

WReSTT was developed using Drupal [6], a content man-
agement system, and uses a four-tier architecture. WReSTT
was designed to allow access to four types of users: develop-

1 http://wrestt.cis.fiu.edu/

JUnit: Java Unit Testing Framework | WEB-BASED REPOSITORY OF SOFTWARE TESTING TOOLS

http://wrestt.cis.fiu.edu/?q=node/31/#junit[6/11/2010 6:47:17 PM]

WEB-BASED REPOSITORY OF
SOFTWARE TESTING TOOLS

Home Register Forums Events Sponsors Links Contact

Main Menu

Home

My Account

Create Content

Log out

Browse
Tools

All Tools

By Category

By Language

By Test Level

Advanced
Filter

Assistance

How-To

Forums

General

Tool
Installation

Tool Usage

User
Showcase

Requests

Affiliations

WRESTT is
sponsored by the
National Science
Foundation under
grants DUE-
0736833 (FIU) and
DUE-0736771
(FAMU).

Links

ApTest
OpenSeminar
TestingFAQs
SWENET
BugHunt
CSTER
Web-CAT

News

Nov 17:
Integrated
'Monthly Tool
Feature' section
and uploaded
first video
tutorial - Eclipse
Emma Features
and Installation
Guide.

Sep 31: Initial
portal for
WRESTT goes
online. User
registration,
user forums,
sponsors, and
contact modules
completed for
Phase 1 of
development.

Number of
Visitors

Mesothelioma

Cancer

Home

JUnit: Java Unit Testing Framework

All Eclipse Java Plug-ins Test Execution Unit Testing

Description

JUnit is a unit testing framework for the Java programming language.

It allows developers and testers to write and run repeatable tests for

Java classes. Features include assertions for testing expected results;

test fixtures for sharing common test data; and test runners for

executing tests.

Official Website

http://www.junit.org

Tutorials (4)

Using JUnit 4 in Eclipse

Using JUnit 3.81 in Eclipse

Unit Testing in Jazz using JUnit

JUnit 4.x Quick Tutorial

» Back to Previous | Back to Home | Ratings and Comments

Using JUnit 4 in Eclipse by Tariq M. King

This tutorial covers creating a code skeleton for your JUnit tests using

Eclipse; setting up a test fixture; developing basic tests using JUnit's

Assert API; testing for exceptions, and running tests.

01 - Introductory

Example

02 - Creating a

New JUnit Test

Case

03 - Defining a

JUnit Test Fixture

Figure 1. Web page in WReSTT showing the links and
some of the tutorials for JUnit.

ers, moderators, instructors and students. Each type of user
has access to a different set of facilities in WReSTT, e.g., in-
structors can monitor how frequently students in their classes
access the tutorials for a specific tool. Data is maintained
for each type of user thereby allowing the WReSTT team to
monitor the use of the repository.

3.2 Instructors Workshop

Phase two of our approach consists of holding a series of an-
nual workshops for instructors that introduce them to soft-
ware testing and the learning resources available through
WReSTT. The main objective of the instructor workshops
is to provide a forum where CS/IT instructors can improve
their knowledge of software testing and software testing
tools to support pedagogy. The outcome for this objective
is that instructors participating in a workshop will increase
their knowledge of software testing and the use of software
testing tools to support pedagogy. More specifically, it is ex-
pected that there be an improvement of at least 30% between
the pretest and posttest scores of the workshop participants.

Our first workshop was conducted in the spring of 2009
and was attended by 17 instructors from various colleges
and universities. The title of the workshop was “The First
Workshop on Integrating Software Testing into Program-

ming Courses (CS1-CS3) (WISTPC 2009)”. The workshop
lasted for two days and during that time the instructors were
exposed to the basic concepts of testing and the resources
available on WReSTT. The resources on WReSTT presented
during the workshop included: EclEmma [17], JUnit [15],
SWAT [32], Rational Functional Tester [18] and Web-CAT
[9]. Web-CAT is a plug-in-based web application that sup-
ports electronic submission and automated grading of pro-
gramming assignments. The instructors attending the work-
shop were also introduced to features of WReSTT to sup-
port pedagogy including, registration, techniques to browse
the tools, and posting to the forums. We present the results
of the first workshop in Section 4.

3.3 Integrating Testing into Programming Courses

Phase three of our approach consists of two components.
The first component is to perform experiments on integrating
testing into programming courses at several academic insti-
tutions and making an evaluation of the integration process.
The second component involves developing learning materi-
als that can be used by other institutions, and embarking on
a broad dissemination plan to get other institutions involved.
All learning materials developed will be made available on
WReSTT.

The main objectives of integrating testing into program-
ming course are: (a) improve the students’ conceptual un-
derstanding of the approaches used to test software; and (b)
improve their practical software testing skills with respect
to the testing tools in WReSTT. The expected outcomes of
this objective are: (a) at least 80% of the students exposed to
integrating testing into programming courses will be able to
describe at least two approaches used to test programs using
automated tools; and (b) at least 80% of the students will be
able to demonstrate how to use at least two of the automated
tools that support the testing techniques in (a).

The research team at Florida International University
conducted studies on integrating testing into the CS2 and SE
courses with the support of the resources in WReSTT. The
general approach used in both courses was non-intrusive,
that is, the courses were taught similar to previous classes,
but the students in the treatment group were exposed to the
learning material available in WReSTT.

In the CS2 course a teaching assistant (TA) was assigned
to the course and the TA’s responsibilities included: (1)
teaching students how to develop unit test cases for their
assignments; (2) teaching them how to use the results from
code coverage to improve testing their programs; and (3)
demonstrating how to use the learning materials for the test-
ing tools on WReSTT. The TA was not available to help
the students with understanding their assignments, since
the students were expected to use the normal resources for
the course, e.g., Professor and other course TAs. In the SE
course WReSTT was introduced to the students prior to the
topic of software testing being covered. The only require-
ment added to the course, to encourage students to use the

Instructors’ Workshop Software Engineering Course
Question Pretest Posttest Pretest Posttest

2. Have you ever used tools to sup-
port testing of programs?

N(7) Y(5) N(1) Y(11) N(15) Y(3) N(6) Y(12)

3.b.i Unit Testing Tool Proficiency Avg = 2.7 (6 responses) Avg = 3.5 (8 responses) Avg = 4 (1 response) Avg = 1.7 (8 responses)
3.b.ii Web-based Testing Tool Pro-
ficiency

Avg = 3.5 (2 responses) Avg = 2.6 (7 responses) NA NA

3.b.iii Functional Testing Tool Pro-
ficiency

Avg = 3.7 (3 responses) Avg = 2.7 (6 responses) NA NA

3.b.iv Code Coverage Tool Profi-
ciency

Avg = 3 (3 responses) Avg = 3.3 (6 responses) (0 responses) Avg = 3 (4 responses)

4. Do you know of any online re-
sources that provide information on
software testing?

N(7) Y(5) N(2) Y(10) N(11) Y(7) N(5) Y(13)

6. How beneficial do you think it is
to use tools to support the testing of
programs?

Avg = 3.9 (11 responses) Avg = 4.6 (11 responses) Avg = 4.3 (18 responses) Avg = 4.6 (18 responses)

8. How well do you know any auto-
mated grading tools that encourage
students in CS1- CS3 to test their
programs before submission?

Avg = 2.2 (12 responses) Avg = 2.8 (12 response) NA NA

Table 1. Results for the closed ended questions in the pretest/posttest instrument. N− No; Y − Yes; Avg− average of scores
are out of 5; NA− Not Applicable in this study.

resources in WReSTT, was awarding bonus points to those
student teams that used tools to automate the testing of the
code for their projects. These tools needed to support unit
testing and code coverage. We report on these studies in
next section.

4. Case Study
In this section we describe the evaluation studies performed
during WISTPC 20092, the Fall 2009 CS2 class and the
Spring 2010 SE class. The evaluation for WISTPC 2009
focused on the effectiveness of improving the participants’
knowledge of software testing and the use of software testing
tools to support pedagogy. The studies in the CS2 and SE
classes focused on improving the students’ practical skills
of testing programs by using automated testing tools. In
the following sections we describe the instruments used to
capture the data, present a summary of the results obtained,
and discuss issues related to the evaluation for the studies.

4.1 Data Capture

Workshop: The data collected for the study reported in this
paper is based on a pretest/posttest instrument that was ad-
ministered to the participants of WISTPC 2009. The in-
strument consisted of nine questions that use both closed
and open ended questions. There were four classes of ques-
tions: Q(1)-(3) focused on program testing and the use of
testing tools, Q(4)-(5) on online resources available to sup-
port testing, Q(6)-(7) assessed the importance of tool sup-
port for software testing, and Q(8)-(9) knowledge of auto-
mated grading tools that encourages testing. The leftmost
column of Table 1 shows the closed ended questions from

2 http://wrestt.cis.fiu.edu/?q=node/27#wistpc09

the pretest/posttest instrument. The instrument was adminis-
tered to the participants during the introduction session and
closing session of the workshop. Seventeen instructors at-
tended the workshop and they came from a cross-section of
tertiary US educational institutions. Other evaluation instru-
ments were administered during the workshop but we do not
describe them in this paper since they focused on the logis-
tics of the workshop and effectiveness of the presenters.

CS2 and SE Classes: The instruments used to collect data
from the students in the CS2 and SE classes included
pretest/posttest and for the SE class the grading rubric used
during the demonstration of the class project. Thirty-one
(31) students in the CS2 class volunteered for the study
(treatment group). In the SE class eighteen (18) students par-
ticipated in the study and were divided into eight (8) teams
for the class project. There was no control group for the
SE class. The pretest/posttest instrument consisted of seven
questions, which were similar to the questions used in the
instructors’ workshop. The grading rubric contained criteria
on the testing tool(s) used, and the type of tool(s) selected
i.e., unit testing tool and/or code coverage tool. The test-
ing tools were used mainly to support unit testing of classes
during the implementation and testing phases of the project.

4.2 Results

Workshop: The effectiveness of the workshop was evaluated
using a pretest/posttest instrument that included questions
such as the participants’ knowledge and proficiency of vari-
ous tools and their perceptions of the usefulness of tools to
support program testing. Table 1 shows the results for the
closed ended questions used in the instrument. Columns 1
shows the question text, Columns 2 and 3 show the results
for the pretest and posttest, respectively. Rows with ques-

Instructors’ Workshop
Question t df sig Cohen’s d

3.b.i Unit Testing Tool Profi-
ciency

-2.449 4 0.070 -1.095

3.b.iii Functional Testing Tool
Proficiency

0.200 1 0.874 0.141

3.b.iv Code Coverage Tool Pro-
ficiency

1.000 1 0.500 0.707

6. How beneficial do you think
it is to use tools to support the
testing of programs?

-3.730 10 0.004 -1.125

8. How well do you know any
automated grading tools that
encourage students in CS1-
CS3 to test their programs be-
fore submission?

-2.390 10 0.038 -0.721

Table 2. Results after applying paired sample t-tests and
Cohen’s d effect size on the data collected.

tion numbers 2 and 4 show the number of responses with the
value no (N) and yes (Y). The other rows in the table con-
tain the average value (out of 5) for the responses given by
the participants. For these questions the Likert scale of 1 to
5 was used, where 1 indicated barely competent, not at all
beneficial, or no knowledge of the tool as the case may be,
and 5 indicated extremely proficient, extremely beneficial,
and very high knowledge about the tool.

At the end of the workshop, the percentage of participants
who were exposed to tools that support testing of programs
had increased from 58.33% to 91.67%. Similarly, the per-
centage of participants who were aware of online resources
that provide information on software testing increased from
58.33% to 83.33%. Paired samples t-tests and Cohen’s d ef-
fect size [4] were conducted and calculated respectively to
test and measure the difference in the proficiency of using
various tools, the perceptions of usefulness of the tools, and
knowledge of automated grading tools. Owing to the small
sample size and the use of several univariate statistical sig-
nificance tests, the p-values of the tests were not used for
inference [28]. Instead the p-values were simply used as in-
dicators of a possible difference between the pretest and the
posttest measurements and the Cohen’s d values were used
to quantify the magnitude of the difference.

As can be seen from the Table 2 Columns 2 through 5,
the perceptions of participants about the usefulness of the
tools to support program testing had the maximum effect
size (1.12), indicating that there was a positive change of
about 112% from before the workshop to after the workshop
that the tools are indeed beneficial. Similarly, in their opin-
ion, participants overall became more proficient in the use
of unit testing tools (d=1.09) and gained more knowledge in
automated grading tools that encourage their students to test
their programs before submission (d=.72). However, partic-
ipants felt that their proficiency level in using the functional
testing tool and the code coverage tool worsened after at-
tending the workshop. This is indeed an area of concern.

CS2 and SE Classes: Initially, 31 students volunteered for
the study (treatment group) in the CS2 class. Of these, 10
students created user accounts on WReSTT, and the 10 ac-
counts were accessed after registration. None of the students
completed the study. It was apparent that students were not
motivated to continue using the WReSTT testing resource
in completing their assignments unless this was a course re-
quirement and awarded credit for using the testing tools.

The results captured using the pretest and posttest for the
SE class are shown in Table 1 Columns 4 and 5. The results
show that after exposure to WReSTT there was a significant
increase (400%) in the number of students that used tools to
support the testing of programs. The contents of Table 1, row
with question number 4, indicates that after the treatment
more students (180% increase) were able to identify at least
one online resource that provided information on software
testing. The results for the SE course shown in the table were
not statistically significant due either to the sample size or
the effect of exposing students to the resources in WReSTT.

The data obtained from the grading rubric and observa-
tion of the project demonstrations indicated that five of the
eight teams used testing tools during the validation of the
team project. The five teams all used unit testing frame-
works, these frameworks included JUnit [15], MbUnit [29],
and Visual Studio Team System 2008 [26]. Two of the teams
also used code coverage tools during testing, these tools in-
cluded Cobertura [3] and the code coverage tool in Visual
Studio Team System 2008 Test Edition [26]. The teams that
used the unit testing tools did a better job at writing test cases
and testing the overall system. In addition, these teams were
more efficient when it came to demonstrating the execution
of test cases i.e., they were able to execute the test drivers
without any problems. The two teams that used the code
coverage tools were able to explain the adequacy of the test
cases with respect to the statement coverage achieved dur-
ing testing. The students in these teams also stated that they
were not able to get 100% code coverage due to the time con-
straints, that is, they did not have enough time to write the
number of test cases required to get 100% code coverage.

4.3 Discussion

The expected outcome of the workshop was to improve the
participants’ knowledge of software testing and the use of
software testing tools to support pedagogy by at least 30%.
This outcome was achieved for the most part as stated in
the previous subsection, specifically in the areas of (1) us-
ing tools to support program testing, and (2) being aware of
online resources to support software testing. Although not
shown in Tables 1 and 2 most participants were able to iden-
tify at least one tool to support unit testing, web-based test-
ing, functional testing and code coverage upon completion
of the workshop. In addition, most of the participants were
also able to identify at least one online resource containing
testing resources.

A review of the answers to several of the questions on
the pretest/posttest instrument revealed that some of the
question may have been ambiguous. In the pretest, partic-
ipants identified unit testing tools, e.g., JUnit [15], as auto-
mated grading tools that encourage students in programming
courses to test their programs before submission. The results
of the posttest revealed that the presentation at the workshop
of coverage tools may have to be reviewed. The participants
identified JUnit as a coverage tool when performing program
testing. This may have been due to the fact that EclEmma
[17] was introduced directly after the JUnit presentation and
participants did not see the distinction. The presentationon
the functional testing tool, Rational Functional Tester [18],
appeared to have been overwhelming for the participants.

Introducing students in the SE class to software testing
tools addresses the second objective and expected outcome
described in Section 3.3. Recall the objective is to improve
the students’ practical software testing skills with respect to
the testing tools in WReSTT. The expected outcome is at
least 80% of the students will be able to demonstrate how
to use at least two of the automated tools that support the
testing techniques. The results obtained during the demon-
stration of the student projects showed that we have not yet
accomplished this objective since only 63% of the student
teams (50% of the students) were proficient in using a unit
testing tool. These numbers were even lower for the code
coverage tool. The reason for this poor result may be at-
tributed to the fact that the course was taught by a PhD stu-
dent who was teaching the course for the first time.

We plan to repeat the study in a future SE class with a
more experienced instructor and continue to offer students
incentives for using tools to support testing. We are also
modifying the interface to the WReSTT web site to incor-
porate some of the social networking concepts such as al-
lowing students to create a profile and a list of friends that
may participate in testing tutorials. We plan to repeat CS2
class study in Fall 2010 and will integrate testing topics ex-
plicitly into the syllabus. Both the instructor and the teaching
assistant for the course in the fall attended the recently held
workshop for integrating testing in to programming courses
(WISTPC 2010).

5. Related Work
Although instructors have been able to introduce testing into
their programming courses with some success, there has
been limited focus on providing instructors with the knowl-
edge, tools, and guidelines necessary to make such a tran-
sition smooth and minimally intrusive. In Section 2 we re-
viewed several of the works related to integrating testing
into programming courses and will not repeat them here.
To the best of our knowledge, this is the first work that
aims to provide both a central repository of software test-
ing tools, and the training workshops necessary to help in-
structors successfully integrate these tools into their CS1-

CS3 and SE courses. However, some researchers have pro-
posed approaches similar to ours which we now describe as
related work.

There have been several workshops and user group ses-
sions on teaching software testing in the computer science
course curricula [10, 22, 23]. The annual Workshop on
Teaching Software Testing (WTST), Kaner et al. [22, 23],
is concerned with teaching many of the practical aspects
of university-caliber software testing to both academic and
commercial students. Both academics who have experience
teaching testing courses, and practitioners who teach pro-
fessional testing seminars share their experiences and tech-
niques with other instructors and graduate students. The
Web-CAT User Group meetings, led by Edwards [10], al-
low users of an automated grading tool for programming
and testing-related assignments to exchange their experi-
ences using the tool, while attracting instructors that may
be thinking of adopting the tool. Although not specifically
geared towards introductory CS courses, such forums are
similar to the WReSTT workshops as they also provide av-
enues for instructor education on effective software testing
techniques and tools.

Lastly, many repositories and tutorials on software testing
tools are accessible via the World-Wide Web [12, 25, 34].
These repositories contain a plethora of software testing
tools and resources. However, the vast number of testing
tools provided by these repositories make them inconvenient
for use by instructors. WReSTT offers a practical solution by
narrowing the scope of the tools and tutorials to those that
both instructors and students have found useful in program-
ming courses.

6. Concluding Remarks
In this paper we presented an approach to integrate testing
tools into programming courses by providing a web-based
repository of software testing tools, training instructors in
the area of testing techniques and tools, and integrating the
use of testing tools in various programming courses. The
contents and structure of the web-based repository of soft-
ware testing tools (WReSTT) was described in the paper. We
have presented the results of the first instructors’ workshop
and the first study on integrating testing tools into CS2 and
SE courses. We have recently held the second instructors’
workshop and are currently performing additional studies in
SE classes. Although the first set of results are promising,
we are continuing to investigate innovative ways to integrate
software testing into programming courses. We expected to
redesign the WReSTT site to be more attractive to students
and provide them with a features that support team-oriented
learning.

Acknowledgments
This work was supported in part by the National Science
Foundation under grants DUE-0736833 (FIU) and DUE-

0736771 (FAMU). We would like to thank Yali Wu and
Barbara Espinoza and for their assistance in collecting the
data, and the reviewers for their insightful comments on how
to improve the paper.

References
[1] M. Clark. JDepend, May 2010.http://www.clarkware.

com/software/JDepend.htm.

[2] ”CNSS”. Software 2015: A national software strategy to
ensure u.s. security and competitiveness. Technical report,
Center for National Software Studies, 2005.

[3] Cobertura Team. Cobertura, May 2010. http://

cobertura.sourceforge.net/.

[4] J. Cohen. The earth is round (p< .05). Ameri-
can Psychologist, 49(12):997–1003, December 1994.
http://web.math.umt.edu/wilson/Math444/

Handouts/Cohen94_earth%20is%20round.pdf.

[5] C. Desai, D. S. Janzen, and J. Clements. Implications of
integrating test-driven development into cs1/cs2 curricula.
SIGCSE Bull., 41(1):148–152, 2009. ISSN 0097-8418.

[6] Drupal Community. Drupal, 2008.http://drupal.org/.

[7] S. H. Edwards. Rethinking computer science education from
a test-first perspective. InCompanion of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA ’03),
pages 148–155, New York, USA, 2003. ACM Press.

[8] S. H. Edwards. Using software testing to move students from
trial-and-error to reflection-in-action. InProceedings of the
35th SIGCSE Conference, pages 26–30, New York, NY, USA,
2004. ACM. ISBN 1-58113-798-2.

[9] S. H. Edwards. Web-CAT: the Web-based Center for Auto-
mated Testing, 2009.http://web-cat.cs.vt.edu/.

[10] S. H. Edwards and M. A. Perez-Quinones. Web-cat user
group, March 2008. BOF session at the 39th SIGCSE Tech-
nical Symposium on Computer Science Education.

[11] S. Elbaum, S. Person, J. Dokulil, and M. Jorde. Bug hunt:
Making early software testing lessons engaging and afford-
able. InICSE ’07: Proceedings of the 29th international con-
ference on Software Engineering, pages 688–697, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[12] D. Faught. TestingFAQs.org - an information resource for
software testers, 2010.http://www.testingfaqs.org/.

[13] M. Feathers. CppUnit, May 2010. http://apps.

sourceforge.net/mediawiki/cppunit/.

[14] S. Frezza. Integrating testing and design methods for under-
graduates: teaching software testing in the context of software
design.Frontiers in Education, Annual, 2:S1G1–4, 2002.

[15] E. Gamma and K. Beck. JUnit, 2008.http://www.junit.
org/.

[16] M. H. Goldwasser. A gimmick to integrate software test-
ing throughout the curriculum. InProceedings of the 33rd
SIGCSE Conference, pages 271–275. ACM, 2002.

[17] M. R. Hoffmann. EclEmma, 2008.http://www.eclemma.
org/.

[18] IBM. Rational Functional Tester , 2008.http://www-01.
ibm.com/software/awdtools/tester/functional/.

[19] U. Jackson, B. Z. Manaris, and R. A. McCauley. Strate-
gies for effective integration of software engineering concepts
and techniques into the undergraduate computer science cur-
riculum. In SIGCSE ’97: Proceedings of the twenty-eighth
SIGCSE technical symposium on Computer science educa-
tion, pages 360–364, New York, NY, USA, 1997. ACM.

[20] D. S. Janzen and H. Saiedian. Test-driven learning: intrinsic
integration of testing into the CS/SE curriculum.SIGCSE
Bull., 38(1):254–258, 2006.

[21] E. L. Jones. Integrating testing into the curriculum — arsenic
in small doses.SIGCSE Bull., 33(1):337–341, 2001.

[22] C. Kaner, S. Barber, and R. Fiedler. Workshop on teaching
software testing: Wtst 7, Jan. 2008.http://www.wtst.org/

wtst7.html.

[23] C. Kaner, S. Barber, and R. Fiedler. Workshop on teaching
software testing: Wtst 8, Jan. 2009.http://www.wtst.org/

wtst8.html.

[24] T. C. Lethbridge, J. Diaz-Herrera, R. J. J. LeBlanc, and J. B.
Thompson. Improving software practice through education:
Challenges and future trends. InFOSE ’07: 2007 Future of
Software Engineering, pages 12–28, Washington, DC, USA,
2007. IEEE Computer Society.

[25] M. J. Lutz, W. M. McCracken, and S. Mengel. Swenet -
network community for software engineering education, Sept
2009.http://www.swenet.org/.

[26] Microsoft Corporation. Visual Studio Team System
2008, May 2010.http://msdn.microsoft.com/en-us/
library/ee338734(v=VS.90).aspx.

[27] G. J. Myers. Art of Software Testing. John Wiley & Sons,
Inc., New York, NY, USA, second edition, 2004. ISBN
0471469122.

[28] P. Natesan and B. Thompson. Extending improvement-over-
chance i-index effect size simulation studies to cover some
small-sample cases.Educational and Psychological Measure-
ment, 67(1):59–72, 2007.

[29] NUnit.org. MbUnit, May 2010.http://www.mbunit.com/.

[30] RTI. The economic impacts of inadequate infrastructure for
software testing. Technical Report 7007.011, National Insti-
tute of Standards and Technology NIST, May 2002.

[31] S. Schaub. Teaching cs1 with web applications and test-driven
development.SIGCSE Bull., 41(2):113–117, 2009.

[32] Ultimate Software. SWAT, 2009.http://sourceforge.
net/projects/ulti-swat/.

[33] Wikipedia. xUnit, 2009. http://en.wikipedia.org/

wiki/XUnit.

[34] L. Williams and S. Heckman. OpenSeminar - software testing
resources, 2010.http://openseminar.org/se/modules/
7/index/screen.do.

[35] WReSTT Team. WReSTT: Web-based Repository for Soft-
ware Testing Tools, 2009.http://wrestt.cis.fiu.edu/.

